Paweł REGULSKI 💿

The material and economic assessment of the life cycle of city buses in the operational phase

ARTICLE INFO

Received: 28 March 2022 Revised: 23 June 2022 Accepted: 7 July 2022 Available online: 9 August 2022 The aim of the article is the material and economic assessment of the life cycle of city buses with combustion engines. As part of the analysis, the analyzed parameters were optimized using neural networks with the use of a regression model. As part of the life cycle assessment criteria, three types of Solaris Urbino buses were analyzed. As a result of the research carried out for buses, the results were obtained regarding the optimal duration of operation, the number and cost of oil, air and fuel filter changes, and the replacement period of buses. The presented research and analyzes have a significant impact on the processes of purchasing and operating city buses.

Key words: life cycle assessment, city buses, operation, neural networks, combustion engines

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Life Cycle Assessment (LCA) concerns the assessment of potential environmental hazards. This model consists of three areas [12]:

- 1. produce the vehicle,
- 2. operation of the vehicle,
- 3. vehicle scrapping.
- The area (phase) of vehicle operation will be analyzed.

The aim of the article is the material and economic assessment of the life cycle of city buses with combustion engines. The following parameters were analyzed: duration of operation, mileage, number and cost of filter changes: oil, air, fuel, and the period of replacement of buses. City buses often form the basis of the functioning of public transport. Solaris buses are operated in many Polish and European cities and meet the currently applicable emission standards. Low exhaust emissions from buses are of great importance for the protection of the environment.

2. Literature review

The use of the LCA cycle for vehicles has been presented in many publications. The publication [1] presents a set of key sustainable development indicators for various stages of the car's life cycle. The publication [2] uses the life cycle assessment methodology to determine whether the material composition strategy of the popular Volkswagen Golf model has reduced its environmental burden over the last 30 years. The publication [3] presents the supporting LCA method, within which fuel consumption was calculated. The application of the LCA cycle for internal combustion engines is presented in publications [4, 5]. The aim of the publication [4] was to present, using LCA analysis, the impact of changes in the material composition of engines on the environment under selected internal combustion conditions used in passenger cars. The simplified LCA model presented in the article presents energy consumption and total CO₂ emissions on the basis of the mass of materials from which the engine is made. The aim of the publication [5] was to demonstrate the environmental impact of changes in the material composition of Volkswagen Golf passenger cars in the last 30 years using the LCA methodology. The presented simplified LCA model of an engine shows the energy consumption and total CO_2 emissions based on the weight of the engine materials. The publication [6] presents the material and energy life cycle of a car. Changes in energy consumption and emission levels are presented. The publication [7] presents the application of the life cycle assessment to the analysis of ecological properties of a passenger car during its operation. The issues related to the operational efficiency of city buses are described in the publication [8]. The publication [9] presents research on the use of batteries in electric cars. The publications [10, 11] present a fleet management strategy that does not take into account the number and cost of replacing oil, air and fuel filters.

3. Research methodology

As part of the life cycle assessment criteria, three types of Solaris Urbino buses were analyzed. Figure 1 presents the Solaris Urbino 10.5 bus [17].

Figure 1. Solaris Urbino 10.5 bus [17]

Table. 1 presents the technical data of the Solaris Urbino 10.5 bus.

The material and	economic assessmen	t of the life	cvcle of city hu	ses in the oneration	il nhase
inc maicriai ana	ccononne assessmen	i oj ine iije	cycie of eny ou	ses in ine operationa	<i>a phase</i>

Table 1. Technical data	of the Solaris Urbino 10.5 bus [20]	
Type of Solaris Bus Urbino 10.5		
Years of production	Since 2017	
Doors layout	2-2-0	
-	2-2-2	
	1-2-0	
	1-2-2	
Number of doors	2-3	
The height of the floor	320 mm	
Engines	Cummins ISB6.7E6C	
_	DAF MX-11	
The power of the engines	Cummins: 187 kW (254 HP),	
	209 kW (277 HP),	
	224 kW (305 HP),	
	DAF: 210 kW (286 HP),	
	240 kW (326 HP),	
	271 kW (368 HP)	
Transmission	Automatic:	
	ZF-EcoLife	
	Voith DIWA.6	
Length	10550 mm	
Width	2550 mm	
Height	3040 mm	
Wheelbase	4450 mm	
Number of seats	Up to 29	
ABS	Yes	
ASR	Yes	
EBS	Yes	
ESP	Yes	
Air conditioning	Optional	

Figure 2 presents the Solaris Urbino 12 bus. Figure 3 presents the Solaris Urbino 18 bus.

Table 2 presents the technical data of the Solaris Urbino 12 bus. Table 3 presents the technical data of the Solaris Urbino 18 bus.

Type of Solaris Bus	Urbino 12
Years of production	Since 1999
1	
Doors layout	2-2-2
	2-2-0
	1-2-2
	1-2-0
Number of doors	2-3
The height of the floor	320 mm
Engines	1) Cummins ISB6.7E6C 250B
	2) Cummins ISB6.7E6C 280B
	3) Cummins ISB6.7E6C 300B
	4) DAF MX-11 210
	5) DAF MX-11 240
	6) DAF MX-11 271
The power of the engines	1) 189 kW (257 HP)
	2) 209 kW (284 HP)
	3) 224 kW (304 HP)
	4) 210 kW (286 HP)
	5) 240 kW (326 HP)
	6) 271 kW (368 HP)
Transmission	1) ZF-EcoLife
	2) <u>Voith</u> DIWA.6
Length	12000 mm
Width	2550 mm
Height	3040 mm
Wheelbase	5900 mm
Number of seats Up to 43	
ABS	Yes
ASR	Yes
EBS	Yes
ESP	Optional
Air conditioning	Optional

Fig. 2. Solaris Urbino 12 bus

Fig. 3. Solaris Urbino 18 bus

Type of Solaris Bus	Urbino 18		
Years of production	Since 1999		
Doors layout	2-2-2-0		
	2-2-2-2		
	1-2-2-0		
	1-2-2-2		
Number of doors	3-4		
The height of the floor	320 mm		
Engines	1) DAF MX-11 240		
	2) DAF MX-11 271		
The power of the engines	1) 240 kW (326 HP)		
	2) 271 kW (368 HP)		
Transmission	1) ZF-EcoLife		
	2) Voith DIWA 6		
Length	18000 mm		
Width	2550 mm		
Height	3090–3200 mm		
Wheelbase	5130 mm		
	6770 mm		
Number of seats	Up to 53		
ABS	Yes		
ASR	Yes		
EBS	Yes		
ESP	No		
Air conditioning	Optional		

For this purpose, neural networks were used to determine the optimal values of the operation duration, mileage, number and costs of replacement of selected consumables and the replacement period of buses. Neural networks can be used wherever there are tasks related to prediction, classification or control. In the conducted analysis, tasks related to prediction were used.

The analyzed parameters were determined on the basis of source data. The duration of operation was determined on the basis of the publication [20]. The mileage in one year was 100,000 km [18]. The engine oil filter was changed

every 30,000 km [21], the air filter every 20,000 km, and the fuel filter every 100,000 km [19]. The cost of purchasing one engine oil filter was PLN 17 [14], one air filter PLN 220 [15], and one fuel filter PLN 32 [13]. The analyzed engine oil, air and fuel filters are used in all analyzed types of buses. As part of the costs of replacing individual filters, the costs of their purchases were taken into account. The bus replacement period was every 9 years [16]. Table 4 presents the values of the analyzed parameters of selected types of buses.

Table 4. Values of the analyzed	parameters of selected types of buses
---------------------------------	---------------------------------------

Type of Solaris Bus	Urbino 10,5					
Duration of operation[years]	4	3		2		1
Mileage [1000·km]	400	300		200		100
Number of filter changes [–]:						
the engine oil filter	13	10	10 7			3
the air filter	20	15		10		5
the fuel filter	4	3		2		1
The cost of replacing [PLN*]:						
the engine oil filter	221	170		119		51
the air filter	4400	3300		2200		1100
the fuel filter	128	96		64		32
Bus replacement period	0	0		0		0
Type of Solaris Bus			Urbino 12			
Duration of operation [years]	9	8		7		6
Mileage [1000·km]	900	800		700		600
Number of filter changes [–]:						
the engine oil filter	30	27		23		20
the air filter	45	40		35	30	
the fuel filter	9	8		7		6
The cost of replacing [PLN*]:						
the engine oil filter	510	459		391		340
the air filter	9900	8800		7700		6600
the fuel filter	288	256		224		192
Bus replacement period	1	0		0		0
Type of Solaris Bus			Urbino 18			
Duration of operation[years]	9	6	5	4		3
Mileage [1000·km]	900	600	500	400		300
Number of filter changes [–]:						
the engine oil filter	30	20	17	13		10
the air filter	45	30	25	20		
the fuel filter	9	6	5	4		3
The cost of replacing [PLN*]:						
the engine oil filter	510	340	289	221		170
the air filter	9900	6600	5500	4400		3300
the fuel filter	288	192	160	128		96
Bus replacement period	1	0	0	0		0
(*) 1 PLN = 0.2 EUR						

As part of the analysis, the analyzed parameters were optimized with the use of neural networks with the use of a regression model in the Statistica program.

The following signals are identified:

 quantitative input variables: operation time, mileage, number of engine oil filter replacements, number of air filter replacements, number of fuel filter replacements, cost of engine oil filter replacements, cost of air filter replacements

Table 5. Prediction sheet

No. – case	Output
1	0
2	0
3	0
4	0
5	1
6	0
7	0
8	0
9	1
11	0
12	0

- qualitative input variables: cost of fuel filter replacement,
- quantitative output variables: bus replacement period.

Table 5 presents the prediction sheet. Figure 4 presents the activation histogram. Table 6 shows the list of the qualities and errors in the regression model.

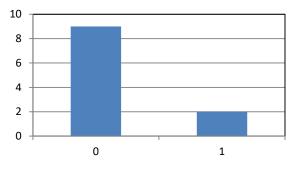


Fig. 4. Histogram of activation

Table 6. List of qualities and errors of the regression model

Quality	Quality	Quality	Error	Error	Error
(train-	(test-	(valida-	(train-	(test-	(valida-
ing)	ing)	tion)	ing)	ing)	tion)
1	0	0	0	0	0

4. Research analysis

The conducted research shows that for optimization equal to 1 for Solaris Urbino 12 and 18 buses with combus-

Nomenclature

ABS	anti-lock	braking	system
<i>i</i> i b b	and lock	oraning	System

ASR acceleration slip regulation

CO₂ carbon dioxide

Bibliography

- Arena M, Azzone G, Conte A. A streamlined LCA framework to support early decision making in vehicle development. J Clean Prod. 2013;41(2):105-113. https://doi.org/10.1016/j.jclepro.2012.09.031
- [2] Danilecki K, Mrozik M, Smurawski P. Changes in the environmental profile of a popular passenger car over the last 30 years results of a simplified LCA study. J Clean Prod. 2017;141(1):208-218. https://doi.org/10.1016/j.jclepro.2016.09.050
- [3] Del Pero F, Delogu M, Pierini M. The effect of lightweighting in automotive LCA perspective: estimation of mass-induced fuel consumption reduction for gasoline turbocharged vehicles. J Clean Prod. 2017;154(6):566-577. https://doi.org/10.1016/j.jclepro.2017.04.013
- [4] Mrozik M. Ecological comparative assessment of selected materials used for the construction of spark ignition engines. Combustion Engines. 2020;183(4):11-14. https://doi.org/10.19206/CE-2020-402
- [5] Mrozik M, Danilecki K. Environmental assessment of the production process of internal combustion engines. Combustion Engines. 2017;171(4):117-120. https://doi.org/10.19206/CE-2017-419
- [6] Mrozik M, Eliasz J, Terelak-Tymczyna A. Material-energy model of motor vehicle life cycle. Strojarstvo. 2013;55(2): 161-168.

tion drive, with a mileage of 900,000 km, the number of engine oil filter changes 30, the number of air filter changes 45 and the number of fuel filter changes 9 and the cost of engine oil filter replacements PLN 510, the cost of replacing the air filter PLN 9,900 and the cost of replacing the fuel filter PLN 288 and the replacement period for buses equal to 1, the optimal duration of operation is 9 years.

For Solaris Urbino 10.5 buses, the optimization results were below 1 and it was not possible to determine the optimal values of the analyzed parameters due to the shorter duration of operation compared to Solaris Urbino 12 and 18 buses.

5. Conclusions

On the basis of the conducted research and analyzes for the assessment of the life cycle of city buses in the operation phase, it has been shown that the optimal duration of operation is 9 years and is related to their mileage, the bus replacement period as well as the cost and number of filter replacements. The use of neural networks to determine the optimization of the analyzed parameters is an important source of information for the processes of planning the operating costs of bus companies. The presented research and analyzes have a significant impact on the processes of purchasing and operating city buses. Further research should be verified on the example of buses in operation in a specific company.

- EBS electronic braking system
- ESP electronic stability program
- LCA Life Cycle Assessment
- [7] Mrozik M, Merkisz-Guranowska A. Environmental assessment of the vehicle operation process. Energies. 2021;14(1): 76. https://doi.org/10.3390/en14010076
- [8] Niewczas A, Rymarz J, Debicka E. Stages of operating vehicles with respect to operational efficiency using city buses as an example. Eksploat Niezawodn. 2019;21(1):21-27. https://doi.org/10.17531/ein.2019.1.3
- [9] Raugei M, Winfield P. Prospective LCA of the production and EoL recycling of a novel type of Li-ion battery for electric vehicles. J Clean Prod. 2019;213(3):926-932. https://doi.org/10.1016/j.jclepro.2018.12.237
- [10] Redmer A. Strategic vehicle fleet management a joint solution of make-or-buy, composition and replacement problems. J Qual Mainten Eng. 2022;28(2):327-349. https://doi:10.1108/JQME-04-2020-0026
- [11] Redmer A. Strategic vehicle fleet management the replacement problem. LogForum. 2016;b(1):17-24. https://doi:10.17270/J.LOG.2016.1.2
- [12] Regulski P, Abramek KF. The application of neural networks for the life-cycle analysis of road and rail rolling stock during the operational phase. Tech Trans. 2022; e2022002.

https://doi.org/10.37705/TechTrans/e2022002

 [13] www.centrumauto.pl/czescisamochodowe/solaris/urbino/urb ino-12-n9389/filtr-paliwa-100261 (accessed on 14.01.2022)

- [14] www.esamochodoweczesci.pl/filtr-oleju-silnikowegofast/FT38093,4938,FT38093~1FAST,a.aspx (accessed on 14.01.2022)
- [15] www.otomoto.pl/czesci/q-filtr-powietrza-solaris/ (accessed on 14.01.2022)
- [16] www.spak.pl/stantaboru/ (accessed on 1.06.2022)
- [17] www.solarisbus.com/pl/pojazdy/napedykonwencjonalne/grupa-urbino (accessed on 21.07.2022)

Paweł Regulski, MSc. – Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin. e-mail: *regulski85@gmail.com*

- [18] www.teraz-srodowisko.pl/aktualnosci/Zielony-Transport-Publiczny-dotacje-11076.html (accessed on 4.06.2022)
- [19] www.ucando.pl/blog/jakie-wystepuja-filtry-w-samochodziei-co-ile-je-wymieniac/ (accessed on 12.01.2022)
- [20] www.wikipedia.org (accessed on 18.06.2021)
- [21] www.wyborkierowcow.pl/co-ile-wymieniac-filtrolejudlaczego-trzeba-zmieniac-filtrolejowy/ (accessed on 30.05.2022)